North Saskatchewan Region Surface Water Quality Management Framework

Sarah Depoe, Director, Cumulative Effects Management Planning

Alberta Environment and Parks

December 1, 2021

Announcement

• In June 2021, Minister Nixon announced a Water Action Plan

NATIONAL*POST

PMN Politics / PMN News / PMN Life / PMN Health / PMN Canada

Alberta moving forward on two new plans to maintain river water quality

The Canadian Press

Jun 22, 2021 • June 22, 2021 • 1 minute read • D Join the conversation

Albertan

Engagement: June to September 2021

North Saskatchewan Region Surface Water Quality Management Framework

A surface water quality management framework (framework) is being developed for the North Saskatchewan Region. The framework establishes an approach for monitoring and managing the cumulative impacts of human activities on water quality in the North Saskatchewan and Battle rivers. Cumulative effects management was first introduced in the North Saskatchewan Region with the Water Management Framework for the Industrial Heartland and Capital Region. which was developed in 2008 to address anticipated development in the Capital Region. At that time, government and stakeholders committed to maintaining or improving surface water quality in the stretch of the North Saskatchewan River from Devon to Pakan. Stakeholder and indigenous engagement on a Surface Water Quality Management Framework began in 2015 as a component of the North Saskatchewan Regional Plan, and continued in 2018. The current engagement will build on these initiatives and processes.

Surface Water Quality Pressures

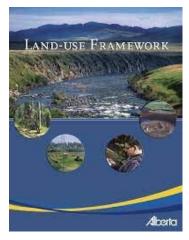
Rivers in the North Saskatchewan Region are relied upon for source water for drinking, livestock watering, recreation, industry, providing healthy aquatic habitat and supporting traditional land use activities. However, pressure from different human activities can impact surface water quality in the region.

Population growth drives urban development, recreational growth, industrial growth and intensification of agricultural operations. All of these activities, individually and in combination, contribute to increased loadings of point source and non-point source pollutants. Nutrients are one type of pollutants from, for example, agricultural run-off or wastewater treatment facilities, which can lead to increased aquatic plant growth, causing changes in the flora and fauna of a river system.

Figure 1: The North Saskatchewan and Battle River Watersheds

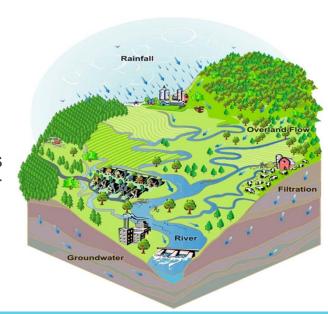
Surface Water Quality Status

Many aspects of water quality in the North Saskatchewan Region have improved in recent decades due to improved management practices, especially wastewater treatment. Despite these advances, concerns for water quality in the North Saskatchewan and Battle rivers include low dissolved oxygen in the winter, nutrient enrichment, trace metals, and high sedimentation. Continuing efforts under the Water Management Framework for the Industrial Heartland and Capital Region are working to address these issues.

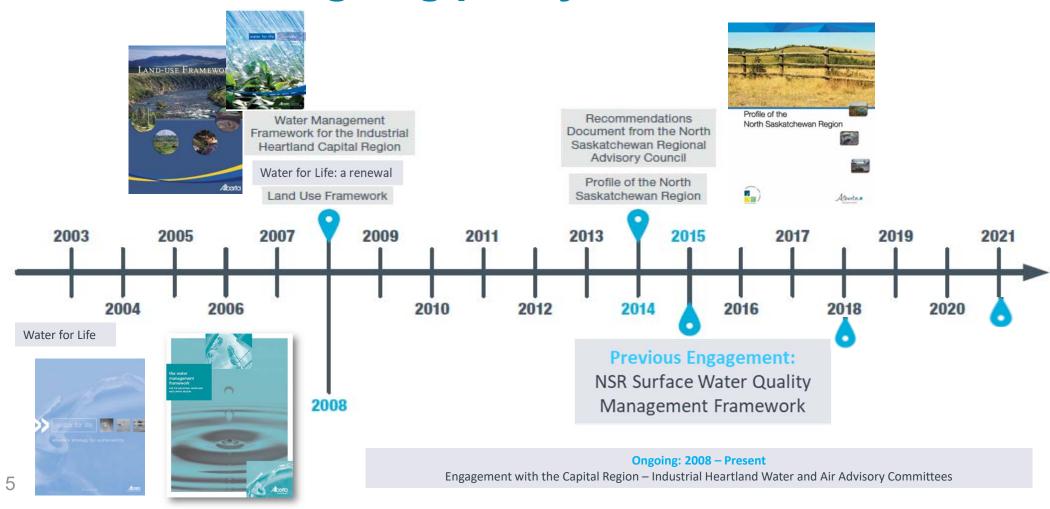

Low flow rates, a natural characteristic of the Battle River, may result in low pH, and high bacterial counts and nutrient concentrations. These sometimes exceed provincial water quality guidelines. This is a prairie-fed river system that relies on precipitation and groundwater to feed the river, so there is less dilution and flushing of human-made wastes.

- Online survey
- Webinar with Q&A
- Indigenous engagement
- Stakeholder engagement

https://www.alberta.ca/northsaskatchewan-region-surface-water-qualitymanagement-engagement.aspx

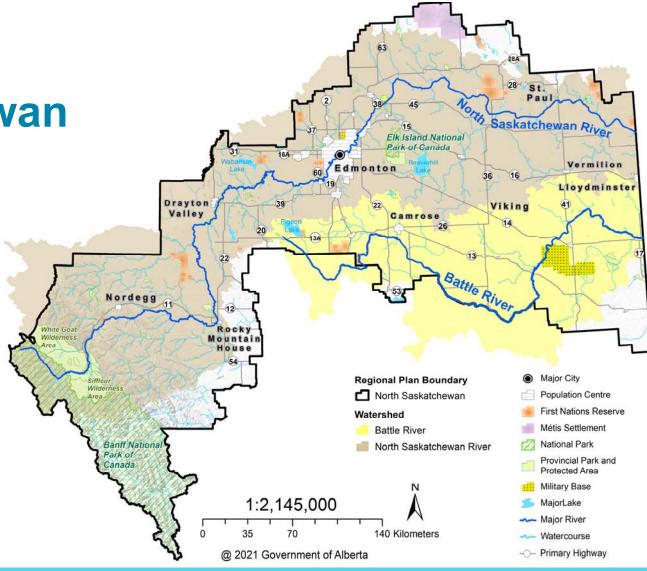


Cumulative Effects Management



2008

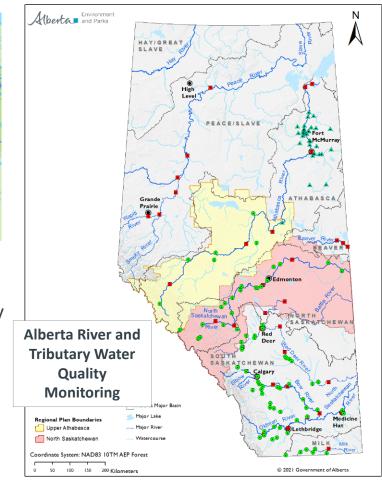
- Cumulative effects are the combined effects of past, present and reasonably foreseeable land-use activities, over time, on the environment.
- Commitment to manage cumulative effects through the development of "thresholds, measurable management objectives, indicators and targets" at regional scale
- Regional environmental management frameworks are a key component of Alberta's cumulative effects management system under the Land-use Framework.

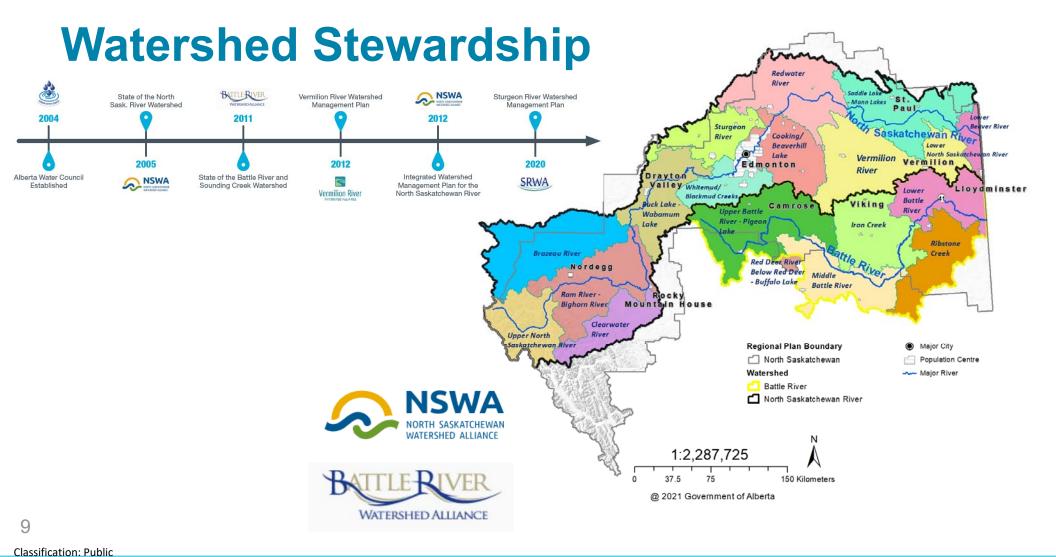


Current and ongoing policy direction & initiatives

A surface water quality management framework establishes an approach to monitoring and managing long-term cumulative impacts of human activities on water quality in the mainstem rivers in a region

North Saskatchewan Region



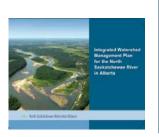

Alberta Environment and Parks staff collect river water samples and test them for nutrients, metals, bacteria, pesticides, etc.

Surface water quality is monitored through Alberta Environment and Parks' long-term river and tributary monitoring networks

Informed by long-term Surface Water Quality Monitoring in Alberta

What will the framework do?

- Establish a regular cycle of monitoring, evaluating, reporting water quality conditions at the regional-scale
- Create a clear process to respond to current or emerging water quality issues in the river
- Set indicators and thresholds to support achievement of regional objectives
- Require that decision makers consider the findings from the framework reporting in land and natural resource decisions


Proposed Regional Objective

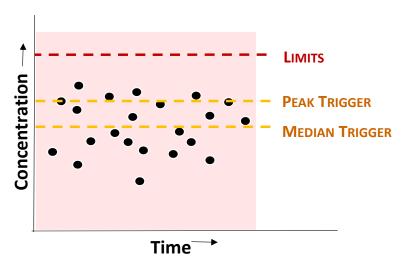
Surface water quality in the North Saskatchewan and Battle rivers is managed so current and future water quality is maintained or improved.

 Consistent with direction for Industrial Heartland and Capital Region

Indicators

 Identify water quality indicators that will used to assess water quality conditions

North Saskatchewan River proposed indicator list:


Total Ammonia	Total Arsenic
Chloride	Total Cadmium
Fluoride	Total Cobalt
Total Nitrate + Nitrite	Total Copper
Total Dissolved Phosphorus	Total Lead
Total Phosphorus	Total Mercury
Sulphate	Total Selenium
Sodium	Total Zinc
Total Suspended Solids	2,4-D (2,4-Dichlorophenoxyacetic acid) (secondary)
Total Organic Carbon	
Escherichia coli	

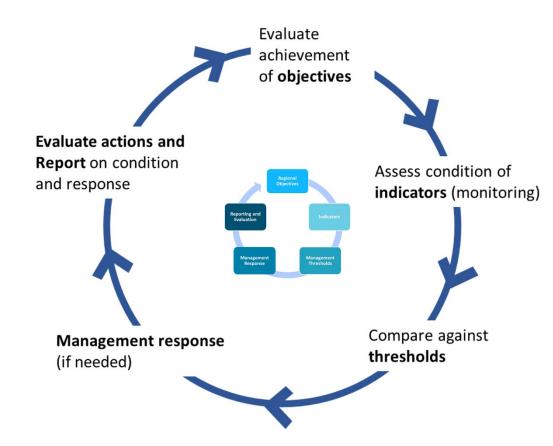
Proposed Thresholds

- Seasonal median and 90th percentile triggers
- Limits based on Alberta's water quality guidelines

- Limits are levels at which the risk of adverse effects on environmental quality is unacceptable;
- Triggers are set in advance of limits as early warning signals

Appendix: Draft indicators, triggers and limits for the Battle and North Saskatchewan rivers

Table 1. Draft indicators, triggers and limits applied at the Battle River at Highway 53 and Driedmeat Lake monitoring stations


Indicator	Unit ^a	Season	Limit ^b	Median Trigger		Peak Trigger		
				Hwy 53	Driedmeat Lake	Hwy 53	Driedmeat Lake	
BIOLOGICAL								
Escherichia coli	no/100ml	open	100	20	10	180	64	
		winter	100	10	10	30	30	
IONS								
Chloride	mg/L	open	100	8.1	32	13	72	
Chloride		winter	100	9.0	75	16	200	
Sodium	mg/L	open	-	48	72	78	120	
Socialii		winter	-	82	160	140	280	
Sulphate	mg/L	open	Equation	22	76	47	160	
Sulphate		winter	Equation	34	200	40	470	
	METALS							
Arsenic (total)	μg/L	open	5	2.31	3.12	5.70	7.42	
Arsenic (total)		winter	5	1.20	2.56	7.26	4.81	
Iron (dissolved)	μg/L	open	300	105	60.8	387	281	
Iron (dissolved)		winter	300	39.7	22.8	476	222	
1 d /k-+-1)	μg/L	open	Equation	0.257	0.505	0.528	3.16	
Lead (total)		winter	Equation	0.237	0.528	2.48	1.63	
Mercury (total)	ng/L	open	5	2.21	3.09	6.59	15.5	
wercury (total)		winter	5	0.985	1.60	14.5	4.15	
Selenium (total)	μg/L	open	2	0.28	0.54	0.56	1.5	
Selemani (total)		winter	2	0.29	1.1	2.4	2.5	

Annual Framework Implementation Cycle

15

Classification: Public

Management Response

 The management response process is a clear steps that will be followed if management thresholds (e.g. triggers, limits) are

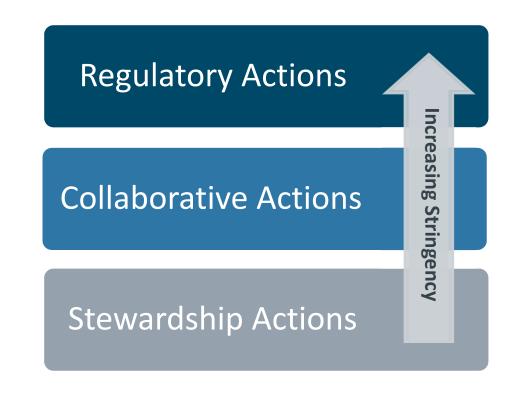
exceeded

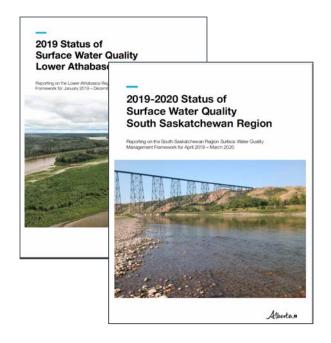
	Investigation
V	Identify Management Actions
V	Deliver Management Actions
	Assess Implementation Effectiveness
	Communication

Management Level	Description			
3	Water quality limit has been exceeded			
Limit				
2	A trigger has been exceeded and undesirable trend or issue is developing			
Trigger				
1	Condition are at or better than historical conditions			

Investigation

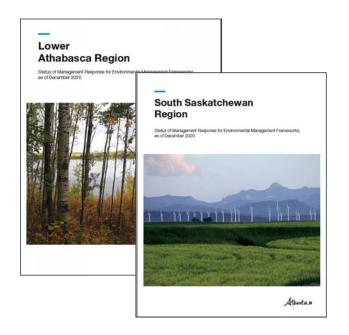
- Investigation will seek to identify the source of the issue; may focus on a specific subwatershed
- The investigation may draw upon additional data sources, for example:
 - Tributary monitoring information from the WaterSHED program
 - Data from partners, community based monitoring




Management actions

- Management actions can range from education and stewardship to regulatory change
- More stringent actions are taken if a limit is approached or exceeded

AEP Reporting



Status of Condition Reports (annual)

Classification: Public

Available on:

- https://www.alberta.ca/lower-athabasca-regional-planning.aspx
- https://www.alberta.ca/south-saskatchewan-regional-planning.aspx
- Open.Alberta.ca

Status of Management Response (every two years)

Next steps

- Input received through engagement is being used to inform framework drafting
- Approval will be sought by Spring 2022, for framework implementation in 2022.
- First reports will be available in 2023, reporting on the 2022 data.

Thank you

More information: sarah.depoe@gov.ab.ca

